Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(7): 4580-4598, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37164850

RESUMO

Forty-five Holstein lactating cows (41 ± 8.8 kg/d of milk yield, 96 ± 35.6 days in milk, and 607 ± 80.4 kg of body weight) were enrolled in this study to assess the effects of diets supplemented with sodium bicarbonate or a magnesium-based product and their corresponding differences in dietary cation-anion difference (DCAD) on rumen pH, rumen microbial population, and milk performance of dairy cattle exposed to an induced decrease in rumen pH through a dietary challenge. Cows were randomly allocated to 3 total mixed rations (TMR) differing in the type of supplement to modulate rumen pH: (1) control, no supplementation; (2) SB, supplemented with 0.82% of sodium bicarbonate with a neutralizing capacity (NC) of 12 mEq/g; and (3) MG, supplemented with 0.25% of magnesium oxide (pHix-Up, Timab Magnesium) with a NC of 39 mEq/g. Thus, SB and MG rations had, in theory, the same NC. The 3 TMR differed for control, SB, and MG in their DCAD-S (calculated considering Na, K, Cl, and S), which was on average 13.2, 21.2, and 13.7 mEq/100 g, respectively, or DCAD-Mg (calculated accounting for Mg, Ca, and P), which was 31.4, 41.2, and 35.2 mEq/100 g, respectively. The study lasted 63 d, with the first 7 d serving as a baseline, followed by a fortnightly progressive decrease of dietary forage-to-concentrate ratio (FCR) starting at 48:52, then 44:56, then 40:60, and finishing at 36:64. Individual dry matter intake (DMI) was recorded daily. Seven cows per treatment were equipped with electronic rumen boluses to monitor rumen pH. Control and SB cows consumed less dry matter (DM; 23.5 ± 0.31 kg/d) than MG cows (25.1 ± 0.31 kg/d) when fed dietary FCR of 44:56 and 40:60. Energy-corrected milk decreased from 40.8 ± 1.21 to 39.5 ± 1.21 kg/d as dietary FCR decreased, independently of dietary treatments. Rumen pH decreased and the proportion of the day with rumen pH <5.8 increased as dietary FCR decreased, and at low dietary FCR (i.e., 36:64) rumen pH was greater in MG cows than in control and SB cows. Reducing the DCAD-S from 28 to 18 mEq/100 g or the DCAD-Mg from 45 to 39 mEq/kg had no effects on DMI or milk yield. Cows supplemented with ∼62 g/d of magnesium oxide (pHix-Up) maintained a greater rumen pH and consumed more DM than cows supplemented with ∼200 g/d of sodium bicarbonate when fed a diet with low FCR.


Assuntos
Lactação , Óxido de Magnésio , Feminino , Bovinos , Animais , Óxido de Magnésio/farmacologia , Bicarbonato de Sódio/farmacologia , Magnésio , Rúmen , Dieta/veterinária , Leite , Ingestão de Alimentos , Ânions , Concentração de Íons de Hidrogênio , Ração Animal/análise , Cátions
2.
Nanomaterials (Basel) ; 11(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804996

RESUMO

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.

3.
Phys Rev Lett ; 123(15): 155501, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702315

RESUMO

Thin film stable glasses transform into a liquid by a moving front that propagates from surfaces or interfaces with higher mobility. We use calorimetric data of vapor-deposited glasses of different thicknesses and stabilities to identify the role of glassy and liquid dynamics on the transformation process. By invoking the existence of an ultrathin intermediate layer whose transformation strongly depends on the properties of both the liquid and the glass, we show that the recovery to equilibrium is driven by the mismatch in the dynamics between glass and liquid. The lifetime of this intermediate layer associated with the moving front is the geometric mean between the bulk transformation time and the alpha relaxation time. Within this view, we explain the observed dependencies of the growth front velocity and the crossover length with both stability and temperature. Extrapolation of these results points towards ordinary thin film glasses transforming via a frontlike transformation mechanism if heated sufficiently fast, establishing a close connection between vapor-deposited and liquid-cooled glasses.

4.
Nanomaterials (Basel) ; 9(4)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022893

RESUMO

Thermoelectricity (TE) is proving to be a promising way to harvest energy for small applications and to produce a new range of thermal sensors. Recently, several thermoelectric generators (TEGs) based on nanomaterials have been developed, outperforming the efficiencies of many previous bulk generators. Here, we presented the thermoelectric characterization at different temperatures (from 50 to 350 K) of the Si thin-film based on Phosphorous (n) and Boron (p) doped thermocouples that conform to a planar micro TEG. The thermocouples were defined through selective doping by ion implantation, using boron and phosphorous, on a 100 nm thin Si film. The thermal conductivity, the Seebeck coefficient, and the electrical resistivity of each Si thermocouple was experimentally determined using the in-built heater/sensor probes and the resulting values were refined with the aid of finite element modeling (FEM). The results showed a thermoelectric figure of merit for the Si thin films of z T = 0.0093, at room temperature, which was about 12% higher than the bulk Si. In addition, we tested the thermoelectric performance of the TEG by measuring its own figure of merit, yielding a result of ZT = 0.0046 at room temperature.

5.
Sensors (Basel) ; 19(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909519

RESUMO

Ultrathin Si films have a reduced thermal conductivity in comparison to Si bulk due to phonon scattering at the surfaces. Furthermore, the small thickness guarantees a reduced thermal mass (in the µJ/K range), which opens up the possibility of developing thermal sensors with a high sensitivity. Based on these premises, a thermoelectric (TE) microsensor based on ultrathin suspended Si films was developed and used as a thermal photosensor. The photoresponse of the device was evaluated with an argon laser (λ = 457 nm) with a variable power ranging from 0 to 10 mW in air at atmospheric pressure, with laser diodes at 406 nm, 520 nm and 638 nm wavelengths, and fixed powers in high vacuum conditions. The responsivity per unit area, response time (τ) and detectivity (D*) of the device were determined in air at ambient pressure, being 2.6 × 107 V/Wm², ~4.3 ms and 2.86 × 10 7   c m H z ( 1 / 2 ) W - 1 , respectively. Temperature differences up to 30 K between the central hot region and the Si frame were achieved during open-circuit voltage measurements, with and without laser diodes. During illumination, the photogeneration of carriers caused a slight reduction of the Seebeck coefficient, which did not significantly change the sensitivity of the device. Moreover, the measurements performed with light beam chopped at different frequencies evidenced the quick response of the device. The temperature gradients applied to the thermoelectric Si legs were corrected using finite element modeling (FEM) due to the non-flat temperature profile generated during the experiments.

6.
Phys Chem Chem Phys ; 20(47): 29989-29995, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30480265

RESUMO

Physical vapour deposition has emerged as the technique to obtain glasses of unbeatable stability. However, vapour deposited glasses exhibit a different transformation mechanism to ordinary glasses produced from liquid. Vapour deposited glasses of different thermodynamic stability, from ultrastable to those similar to ordinary glasses, transform into the liquid state via front propagation starting at the most mobile surfaces/interfaces, at least for the first stages of the transformation, eventually dynamiting the high thermal stability achieved for some of these glasses. A previous study showed that it was possible to avoid this transformation front by capping the films with a higher Tg material. We show here fast calorimetry measurements on TPD and IMC vapour deposited glasses capped respectively with TCTA and TPD. This capped configuration is very effective in suppressing the heterogeneous transformation of the stable glasses into the supercooled liquid and shifts the devitrification temperature to much higher values, where the bulk homogeneous mechanism becomes active. This approach may be useful to further study the bulk glass transition in thin films.

7.
Phys Chem Chem Phys ; 20(34): 21925-21933, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29862402

RESUMO

Secondary relaxations persistent in the glassy state after structural arrest are especially relevant for the properties of the glass. A major thrust in research in dynamics of glass-forming liquids is to identify what secondary relaxations exhibit a connection to the structural relaxation and are hence more relevant. Via the Coupling Model, secondary relaxations having such connection have been identified by properties similar to the primitive relaxation of the Coupling Model and are called the Johari-Goldstein (JG) ß-relaxations. They involve the motion of the entire molecule and act as the precursor of the structural α-relaxation. The change in dynamics of the secondary relaxation by aging an ordinary glass is one way to understand the connection between the two relaxations, but the results are often equivocal. Ultrastable glasses, formed by physical vapour deposition, exhibit density and enthalpy levels comparable to ordinary glasses aged for thousands of years, as well as some particular molecular arrangement. Thus, ultrastable glasses enable the monitoring of the evolution of secondary processes in case aging does not provide any definitive information. Here, we study the secondary relaxation of several ultrastable glasses to identify different types of secondary relaxations from their different relationship with the structural relaxation. We show the existence of two clearly differentiated groups of relaxations: those becoming slower in the ultrastable state and those becoming faster, with respect to the ordinary unaged glass. We propose ultrastability as a way to distinguish between secondary processes arising from the particular microstructure of the system and those connected in properties to and acting as the precursor of the structural relaxation in the sense of the Coupling Model.

8.
Sci Adv ; 4(5): eaar8332, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29806029

RESUMO

Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials' glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used.

9.
Phys Chem Chem Phys ; 20(6): 3939-3945, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29360120

RESUMO

Secondary relaxations are fundamental for their impact in the properties of glasses and for their inseparable connection to the structural relaxation. Understanding their density dependence and aging behavior is key to fully address the nature of glasses. Ultrastable glasses establish a new benchmark to study the characteristics of secondary relaxations, since their enthalpy and density levels are unattainable by other routes. Here, we use dielectric spectroscopy at ambient and elevated pressures to study the characteristics of the secondary relaxation in ultrastable etoricoxib, reporting a 71% decrease in dielectric strength and one decade increase in relaxation time compared to the ordinary glass. Interestingly, we find an unprecedented connection between secondary and structural relaxations in ultrastable etoricoxib in exactly the same manner as in the ordinary glass, manifested through different properties, such as aging and devitrification. These results further support and extend the general validity of the connection between the secondary and structural relaxation.

10.
Sci Rep ; 8(1): 1380, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358585

RESUMO

Since the discovery of ultrastability, vapor deposition has emerged as a relevant tool to further understand the nature of glasses. By this route, the density and average orientation of glasses can be tuned by selecting the proper deposition conditions. Dielectric spectroscopy, on the other hand, is a basic technique to study the properties of glasses at a molecular level, probing the dynamics of dipoles or charge carriers. Here, and for the first time, we explore the dielectric behavior of vapor deposited N,N-Diphenyl-N,N'bis(methylphenyl)-1,1'-biphenyl-4,4'-diamines (TPD), a prototypical hole-transport material, prepared at different deposition temperatures. We report the emergence of a new relaxation process which is not present in the ordinary glass. We associate this process to the Maxwell-Wagner polarization observed in heterogeneous systems, and induced by the enhanced mobility of charge carriers in the more ordered vapor deposited glasses. Furthermore, the associated activation energy establishes a clear distinction between two families of glasses, depending on the selected substrate-temperature range. This finding positions dielectric spectroscopy as a unique tool to investigate the structural and electronic properties of charge transport materials and remarks the importance of controlling the deposition conditions, historically forgotten in the preparation of optoelectronic devices.

11.
Nano Lett ; 17(12): 7751-7760, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29111758

RESUMO

In this paper, the amorphous Ce68Al10Cu20Co2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near Tg from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

12.
Phys Chem Chem Phys ; 19(18): 11089-11097, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425515

RESUMO

Physical vapour deposition (PVD) has settled in as an alternative method to prepare glasses with significantly enhanced properties, providing new insights into the understanding of glass transition. One of the striking properties of some PVD glasses is their transformation into liquid via a heterogeneous mechanism that initiates at surfaces/interfaces. Here, we use membrane-based fast-scanning nanocalorimetry (104 K s-1) to analyse the variables that govern the transformation mechanism of vapour-deposited toluene glasses with different stabilities. Thin films ranging from 20 to 250 nm were prepared at deposition temperatures between 0.70 and 1.15 times the glass transition temperature. We show how a propagating growth front is the initial transformation mechanism in all the vapour deposited samples, revealing a clear tendency to faster front velocities for less stable samples. Contrary to other glass-formers such as indomethacin, toluene shows a one-to-one relationship between limiting fictive temperature and front velocity. We associate this behaviour with the much simpler molecular geometry of toluene, which would prevent the presence of strong preferential molecular arrangements in the glass. However, the propagation distance of the growth front before the homogenous transformation mechanism dominates the transition is found to be dependent on the preparation conditions rather than on the thermal stability of the glass. Understanding the link between the growth variables and the properties of PVD glasses is crucial for finding and developing potential applications of this type of glass.

13.
Phys Chem Chem Phys ; 18(11): 8244-5, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26911522

RESUMO

Correction for 'Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study' by Edgar Leon-Gutierrez et al., Phys. Chem. Chem. Phys., 2010, 12, 14693-14698.

14.
Phys Chem Chem Phys ; 17(46): 31195-201, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26548465

RESUMO

While ordinary glasses transform into supercooled liquid via a homogeneous bulk mechanism, thin film glasses of higher stability transform heterogeneously by a front propagating from the surface and/or the interfaces. In this work, we use quasi-adiabatic fast scanning nanocalorimetry to determine the heat capacity of thin glassy layers of indomethacin vapor-deposited in a broad temperature range of 110 K below the glass transition temperature. Their variation in fictive temperature amounts to 40 K. We show that a propagating front is the initial transformation mechanism in all cases. Using an ad hoc surface normalization procedure we determine the corresponding growth front velocity for the whole range of deposition temperatures. Although the transformation rate changes by a factor of 10 between the most and less stable samples, the relation between the mobility of the front and the thermodynamic stability of the glass is not uniquely defined. Glasses grown above 280 K, which are at equilibrium with the supercooled liquid, present a different dependence of the growth front velocity on fictive temperature compared to glasses grown out of equilibrium at Tdep < 250 K. These glasses transform faster with increasing Tf. Our data clarify previous reports and support the evidence that the fictive temperature alone is not an absolute indicator of the properties of the glass, at least when its structure is not completely isotropic. To interpret the data, we propose that the growth front velocity depends on three terms: the mobility of the liquid at a given temperature, the mobility of the glass and the arrangement of the molecules in the glass.

15.
J Synchrotron Radiat ; 22(3): 717-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931088

RESUMO

The use of a membrane-based chip nanocalorimeter in a powder diffraction beamline is described. Simultaneous wide-angle X-ray scattering and scanning nanocalorimetric measurements are performed on a thin-film stack of palladium/amorphous silicon (Pd/a-Si) at heating rates from 0.1 to 10 K s(-1). The nanocalorimeter works under a power-compensation scheme previously developed by the authors. Kinetic and structural information of the consumed and created phases can be obtained from the combined techniques. The formation of Pd2Si produces a broad calorimetric peak that contains overlapping individual processes. It is shown that Pd consumption precedes the formation of the crystalline Pd2Si phase and that the crystallite size depends on the heating rate of the experiment.

16.
Proc Natl Acad Sci U S A ; 112(8): 2331-6, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675511

RESUMO

Glasses are out-of-equilibrium systems aging under the crystallization threat. During ordinary glass formation, the atomic diffusion slows down, rendering its experimental investigation impractically long, to the extent that a timescale divergence is taken for granted by many. We circumvent these limitations here, taking advantage of a wide family of glasses rapidly obtained by physical vapor deposition directly into the solid state, endowed with different "ages" rivaling those reached by standard cooling and waiting for millennia. Isothermally probing the mechanical response of each of these glasses, we infer a correspondence with viscosity along the equilibrium line, up to exapoise values. We find a dependence of the elastic modulus on the glass age, which, traced back to the temperature steepness index of the viscosity, tears down one of the cornerstones of several glass transition theories: the dynamical divergence. Critically, our results suggest that the conventional wisdom picture of a glass ceasing to flow at finite temperature could be wrong.

17.
J Phys Chem B ; 118(36): 10795-801, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25105838

RESUMO

Ultrastable thin film glasses transform into supercooled liquid via propagating fronts starting from the surface and/or interfaces. In this paper, we analyze the consequences of this mechanism in the interpretation of specific heat curves of ultrastable glasses of indomethacin for samples with varying thickness from 20 nm up to several microns. We demonstrate that ultrastable films above 20 nm have identical fictive temperatures and that the apparent change of onset temperature in the specific heat curves originates from the mechanism of transformation and the normalization procedure. An ad hoc surface normalization of the heat capacity yields curves which collapse into a single one irrespective of their thickness. Furthermore, we fit the surface-normalized specific heat curves with a heterogeneous transformation model to evaluate the velocity of the growth front over a much wider temperature interval than previously reported. Our data expands previous values up to Tg + 75 K, covering 12 orders of magnitude in relaxation times. The results are consistent with preceding experimental and theoretical studies. Interestingly, the mobility of the supercooled liquid in the region behind the transformation front remains constant throughout the thickness of the layers.

18.
Proc Natl Acad Sci U S A ; 111(31): 11275-80, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25002498

RESUMO

Glasses and other noncrystalline solids exhibit thermal and acoustic properties at low temperatures anomalously different from those found in crystalline solids, and with a remarkable degree of universality. Below a few kelvin, these universal properties have been successfully interpreted using the tunneling model, which has enjoyed (almost) unanimous recognition for decades. Here we present low-temperature specific-heat measurements of ultrastable glasses of indomethacin that clearly show the disappearance of the ubiquitous linear contribution traditionally ascribed to the existence of tunneling two-level systems (TLS). When the ultrastable thin-film sample is thermally converted into a conventional glass, the material recovers a typical amount of TLS. This remarkable suppression of the TLS found in ultrastable glasses of indomethacin is argued to be due to their particular anisotropic and layered character, which strongly influences the dynamical network and may hinder isotropic interactions among low-energy defects, rather than to the thermodynamic stabilization itself. This explanation may lend support to the criticisms by Leggett and others [Yu CC, Leggett AJ (1988) Comments Condens Matter Phys 14(4):231-251; Leggett AJ, Vural DC (2013) J Phys Chem B 117(42):12966-12971] to the standard tunneling model, although more experiments in different kinds of ultrastable glasses are needed to ascertain this hypothesis.

19.
Phys Chem Chem Phys ; 12(44): 14693-8, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20944849

RESUMO

Vapor deposited thin films (~100 nm thickness) of toluene and ethylbenzene grown by physical vapor deposition show enhanced stability with respect to samples slowly cooled from the liquid at a rate of 5 K min(-1). The heat capacity is measured in situ immediately after growth from the vapor or after re-freezing from the supercooled liquid at various heating rates using quasi-adiabatic nanocalorimetry. Glasses obtained from the vapor have low enthalpies and large heat capacity overshoots that are shifted to high temperatures. The stability is maximized at growth temperatures in the vicinity of 0.8 T(g) for both molecules, although glasses of ethylbenzene show superior stabilization. Our data is consistent with previous results of larger organic molecules suggesting a generalized behavior on the stability of organic glasses grown from the vapor. In addition, we find that for the small molecules analyzed here, slowing the growth rate below 0.1 nm s(-1) does not result in increased thermodynamic stability.

20.
J Comb Chem ; 9(2): 230-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17348729

RESUMO

We have grown thin film libraries of the Mg-Al system using a high-throughput synthesis methodology that combines the sequential deposition of pure elements (Mg and Al) by an electron-beam (e-beam) evaporation technique and the use of a special set of moving shadow masks. This novel mask has been designed to simultaneously prepare four identical arrays of different compositions that will permit the characterization of the same library after several treatments. Wavelength dispersive spectroscopy (WDS) and micro-X-ray diffraction have been used as high-throughput screening techniques for the determination of the composition and structure of every member of the library in the as-deposited state and after hydrogenation at 1 atm of H2 during 24 h at three different temperatures: 60, 80, and 110 degrees C. We have analyzed the influence of the Mg-Al ratio on the hydrogenation of magnesium, as well as on the appearance of complex hydride phases. We have also found that aluminum can act as a catalyzer for the hydrogenation reaction of magnesium.


Assuntos
Alumínio/química , Técnicas de Química Combinatória , Hidrogênio/química , Magnésio/química , Elétrons , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...